

Mid-term course evaluation

From today **until Sunday March 23th at midnight:**

Indicative Student Feedback on Teaching

More info: <https://www.epfl.ch/education/teaching/fr/soutien-a-lenseignement/ressources-étudiants/#indicativefeedback>

From ~ June:

In-depth evaluation

Class 07

Charge transport in semiconductors

17.03.2025

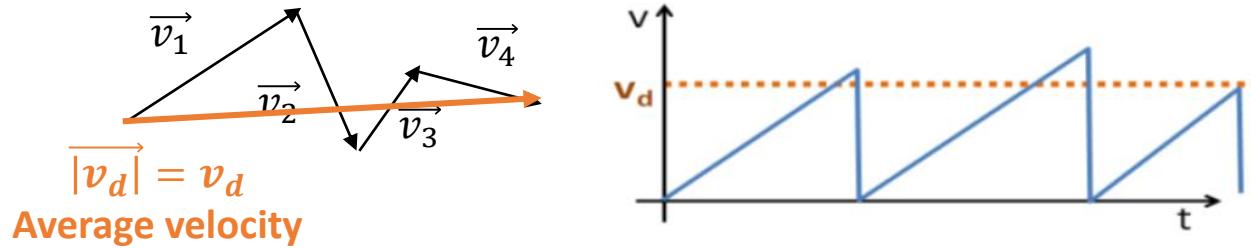
- Charge mobility
 - Relaxation time approximation
 - Scattering phenomena
 - Matthiesen's rule

- 2DEG
 - Engineering 1D channel
 - Quantum conductance

Drude model for electron gas

Electron transport in an electron gas

$$\vec{F} = -e\vec{E} = \hbar \frac{d\vec{k}}{dt} = m_e \frac{d\vec{v}}{dt}$$



$$\vec{J}_{drift} = -e * n * \vec{v}_d$$

Current density vs average velocity

$$\vec{v}_d = \mu_e \vec{E}$$

Average velocity vs electric field

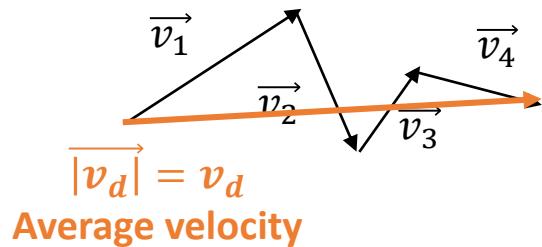
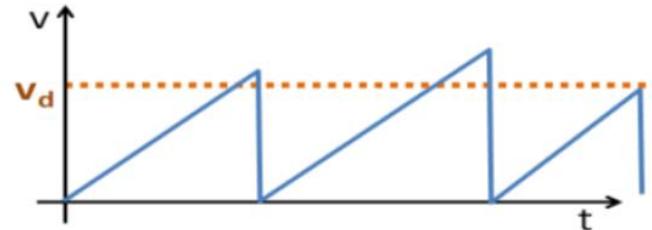
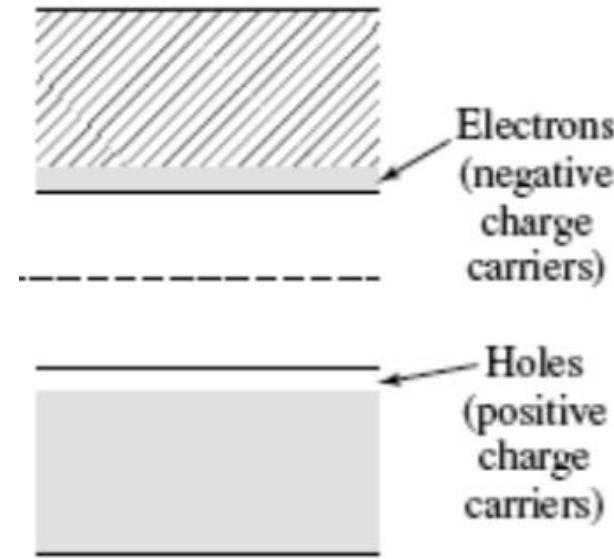
$$\vec{J}_{drift} = -e * n * \mu_e \vec{E}$$

Current density vs electric field

Modified Drude model for semiconductors

Electron transport in a semiconductor

$$\vec{F} = -e\vec{E} = \hbar \frac{d\vec{k}}{dt} = m^* \frac{d\vec{v}}{dt}$$



$$\vec{J}_{drift} = -e * n * \vec{v}_{d,e} + e * p * \vec{v}_{d,h}$$

Current density vs average velocity

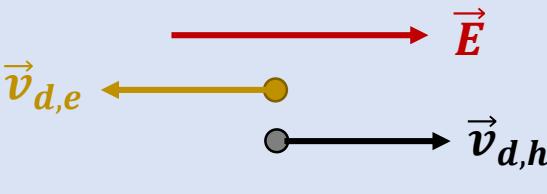
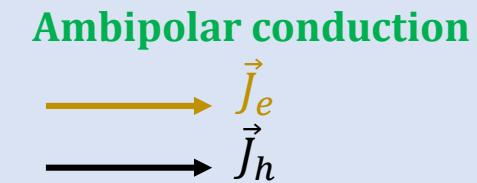
$$\vec{v}_{d,e} = \mu_e \vec{E} \quad \vec{v}_{d,h} = \mu_h \vec{E}$$

Average velocity vs electric field

$$\vec{J}_{drift} = -e * n * \mu_e \vec{E} + e * p * \mu_h \vec{E}$$

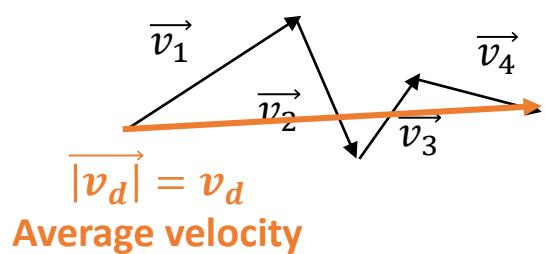
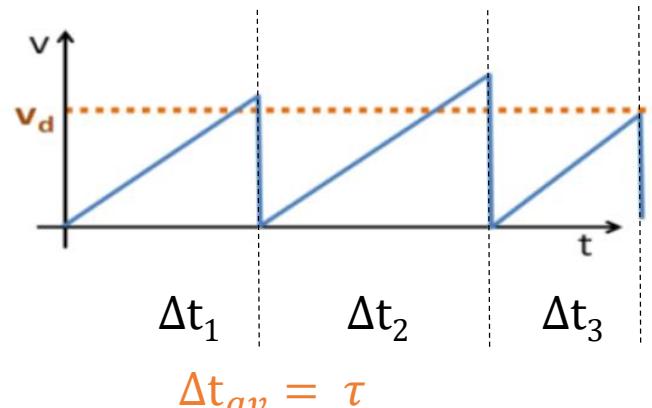
Current density vs electric field

$$J_{drift} = e * \underbrace{(n * \mu_e + p * \mu_h)}_{\sigma: \text{conductivity}} * E$$



Relaxation time approximation

$$\vec{F} = -e\vec{E} = \hbar \frac{d\vec{k}}{dt} = m^* \frac{d\vec{v}}{dt}$$



Average time between collision events
(scattering)

$\frac{1}{\tau} \rightarrow$ scattering frequency

(proportional to the scattering probability)

RELAXATION TIME APPROXIMATION

$$\frac{dv}{dt} = \frac{v_d}{\tau}$$

$$-eE = m^* \frac{v_d}{\tau}$$

$$v_d = -\frac{e\tau}{m^*} E$$

$$\mu = -\frac{e\tau}{m^*}$$

$$\sigma = -\frac{e^2 n \tau}{m^*}$$

Question:

Which law of classical physics would not be valid without collisions? Is it physically possible to achieve it?

Mobility of real materials

Material	$-\mu_n$ (cm ² /Vs)	μ_p (cm ² /Vs)
Si (1.12 eV)	1300	500
Ge (0.67 eV)	4500	3500
GaAs (1.42 eV)	8800	400
GaN (3.40 eV)	300	180
InSb (0.17 eV)	77 000	750
InAs (0.36 eV)	33 000	460
InP (1.34 eV)	4600	150
ZnO (3.37 eV)	230	8

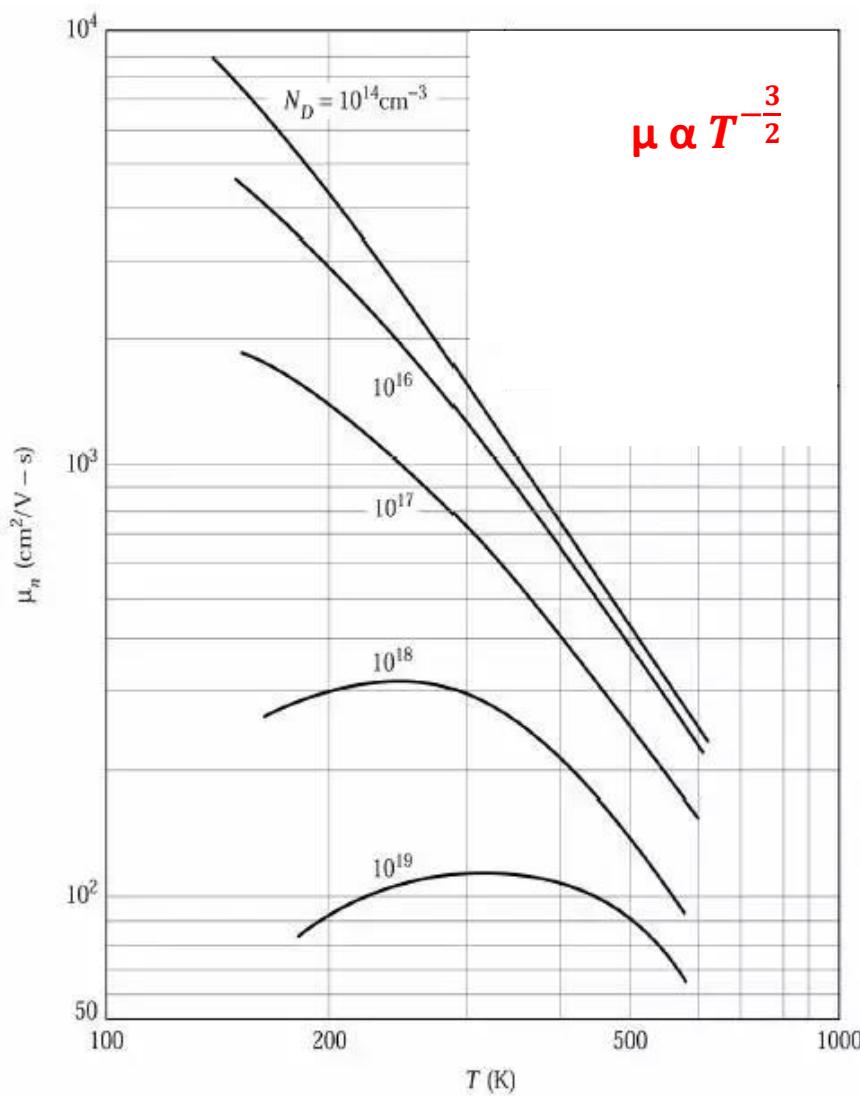
Is the band gap affecting the mobility?
If so, can you explain why?

How would you engineer the charge transport in a semiconductor?

Scattering source

How many scattering phenomena in a crystal can you think of?

Lattice phonons (non-polar)



Ionized impurities

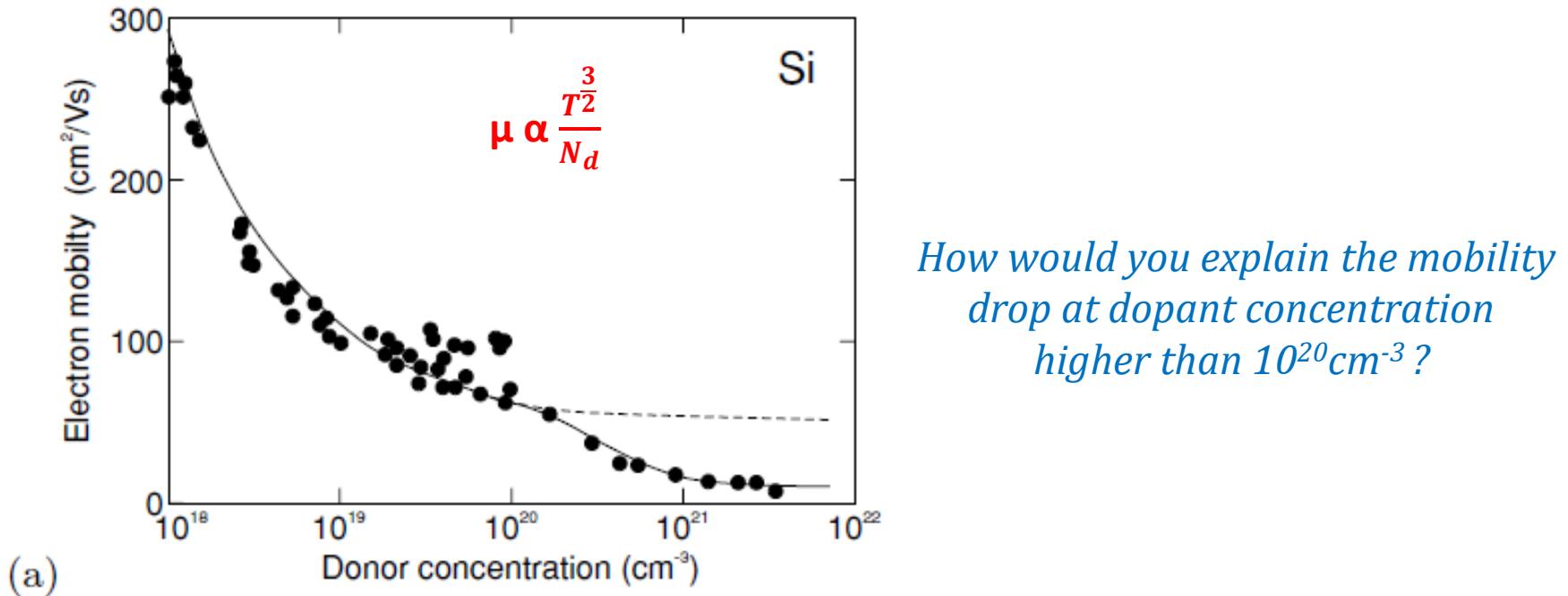
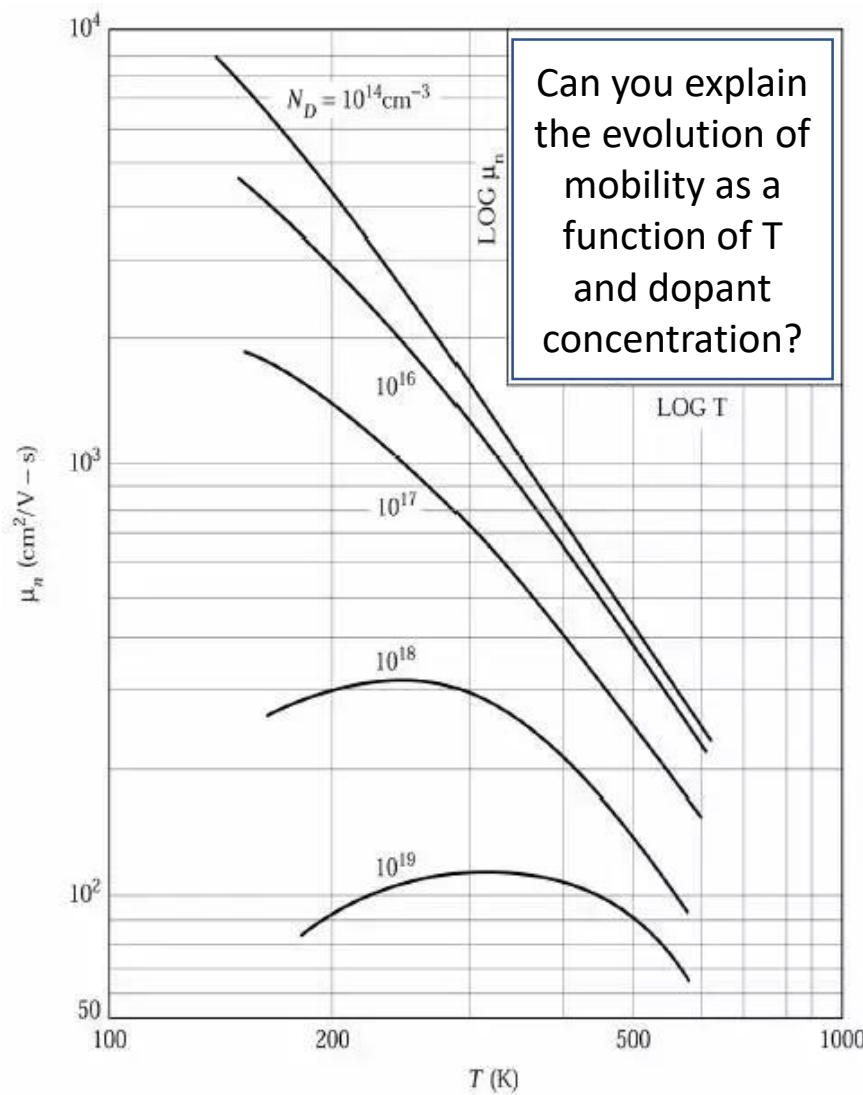


Fig. 8.3 a Electron mobility in highly doped silicon. Experimental data (symbols) from various sources and modeling with ionized impurity scattering with (solid line) and without (dashed line) considering impurity clustering. **b** Effective impurity cluster charge Z_D . Adapted from [722]

Mobility vs T in an ideal doped semiconductor



Crystal defects

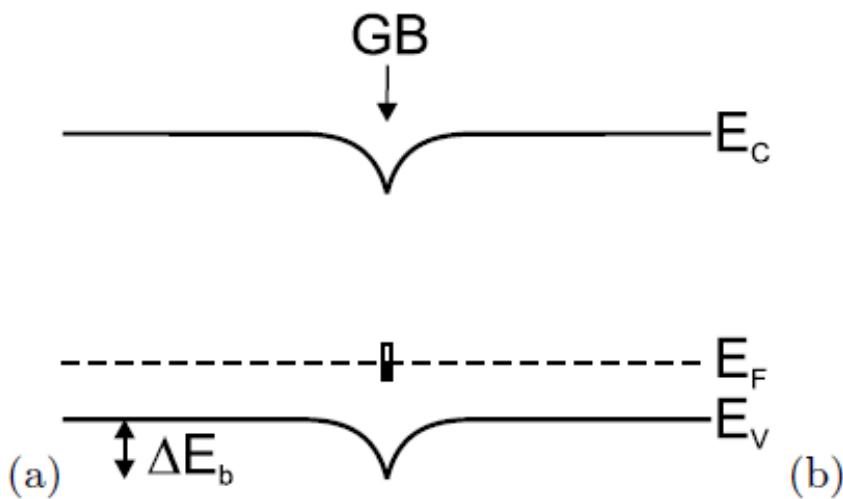
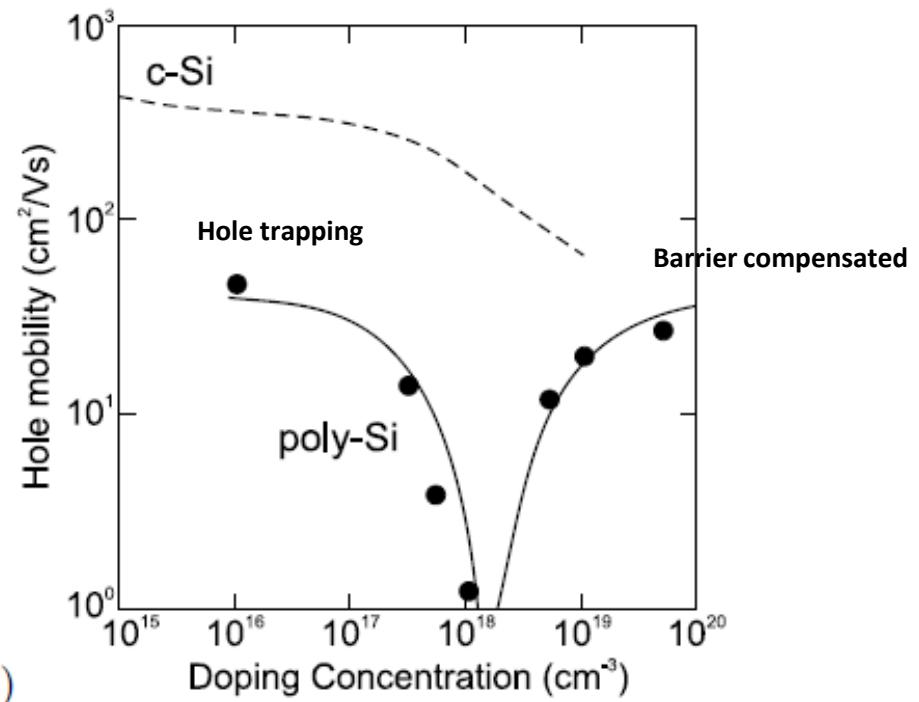


Fig. 8.4 **a** Electronic barrier (ΔE_b) for (hole) transport at a grain boundary (GB). **b** Average hole mobility in poly-silicon, experimental data (symbols) and theoretical model (solid line). The dependence for monocrystalline silicon is shown for comparison as *dashed line*. Adapted from [730]

Matthiesen's rule

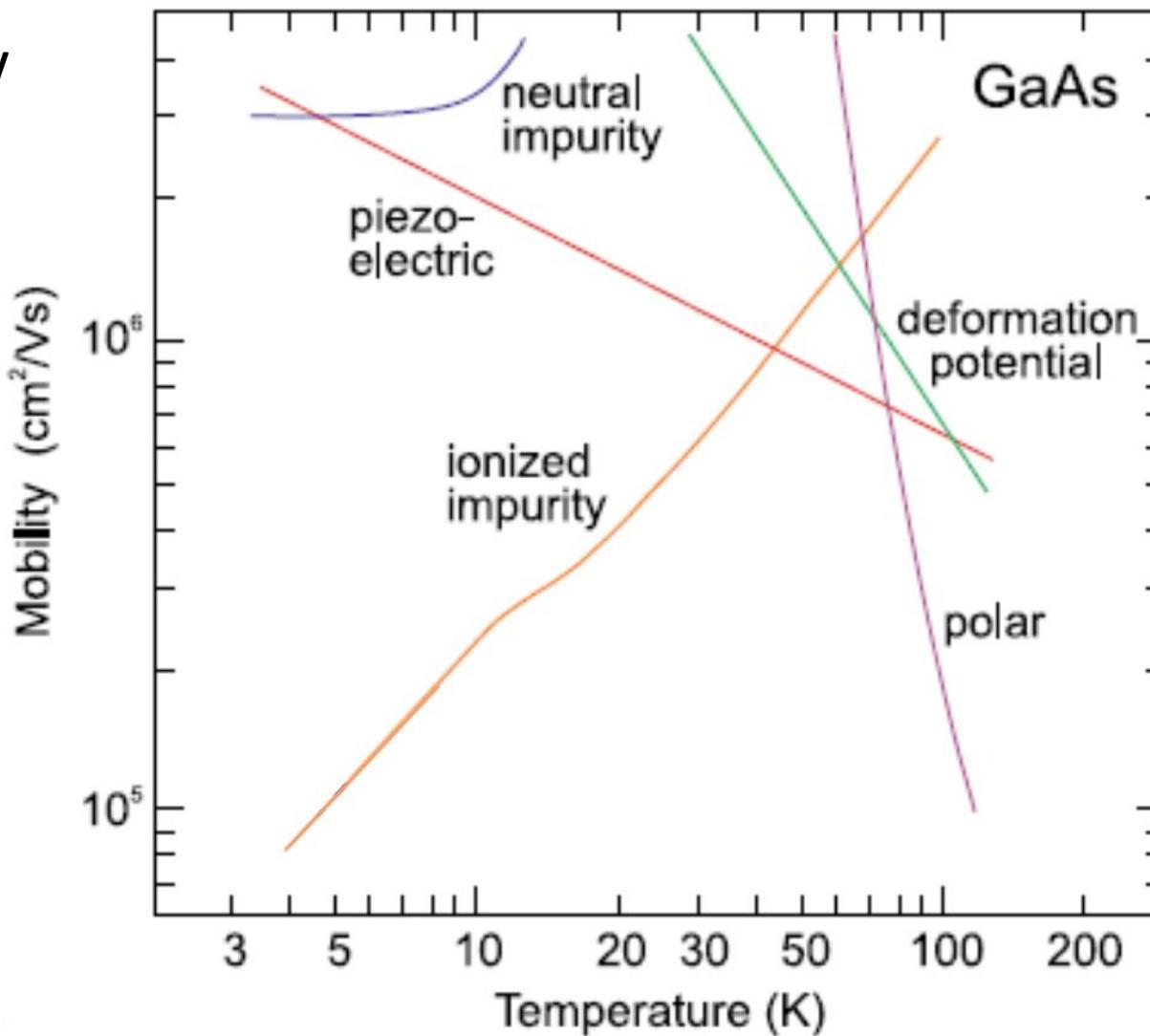
$\frac{1}{\tau} \rightarrow$ scattering probability

$$\frac{1}{\tau^*} = \frac{1}{\tau_1} + \frac{1}{\tau_2} + \frac{1}{\tau_3} + \dots$$

$$\frac{1}{\tau^*} = \sum_i \frac{1}{\tau_i}$$

$$(\mu_i = q \tau_i / m^*)$$

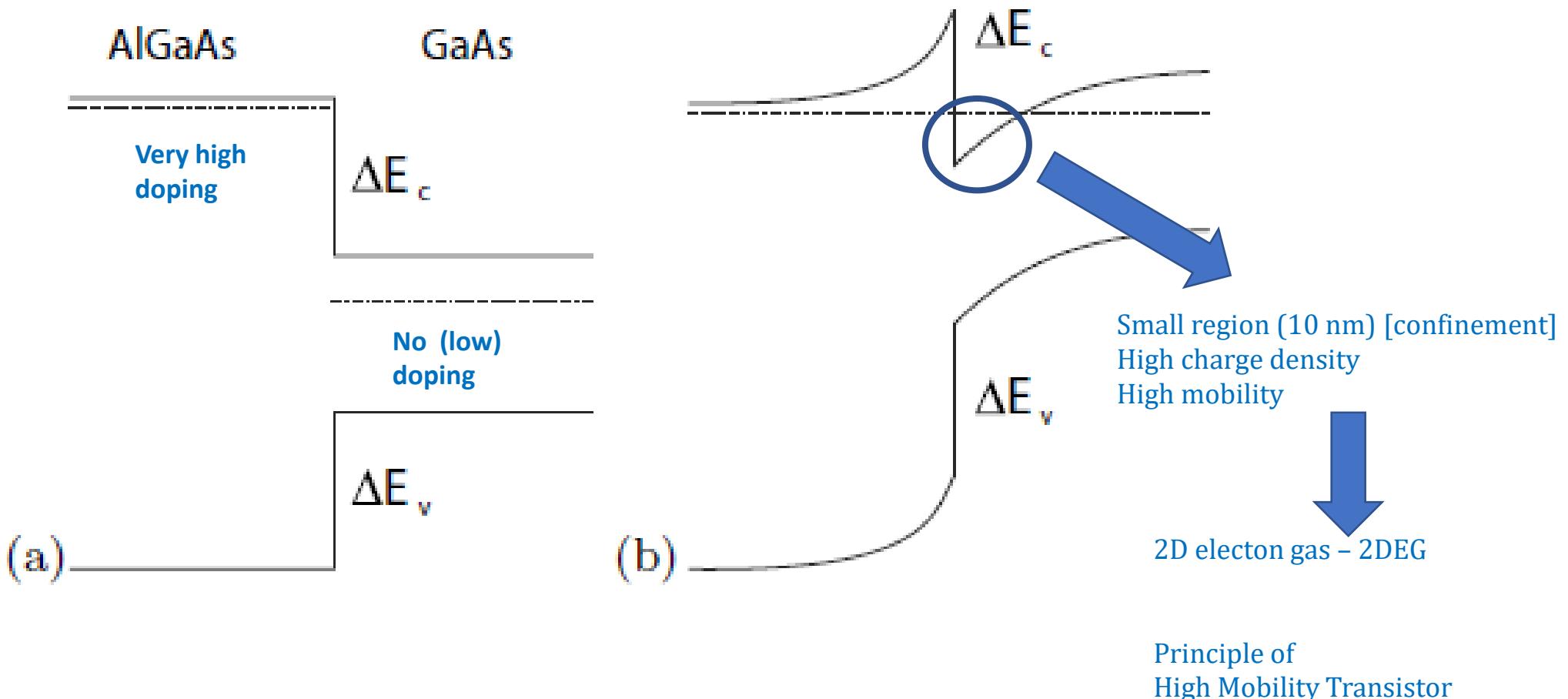
$$\frac{1}{\mu^*} = \sum_i \frac{1}{\mu_i}$$



Remote doping

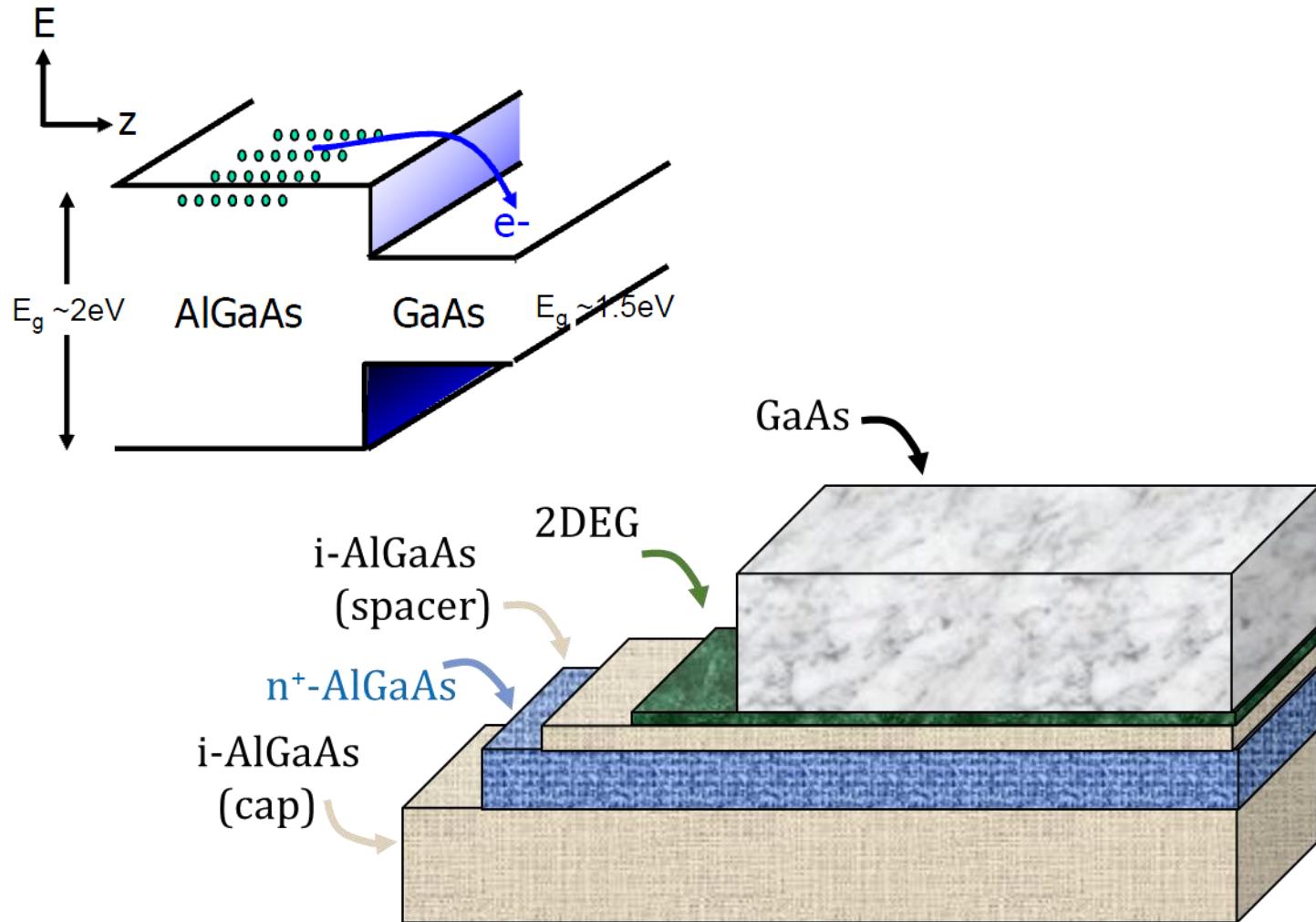
$$\mu = -\frac{e\tau}{m^*}$$

$$\sigma = -\frac{e^2 n \tau}{m^*}$$

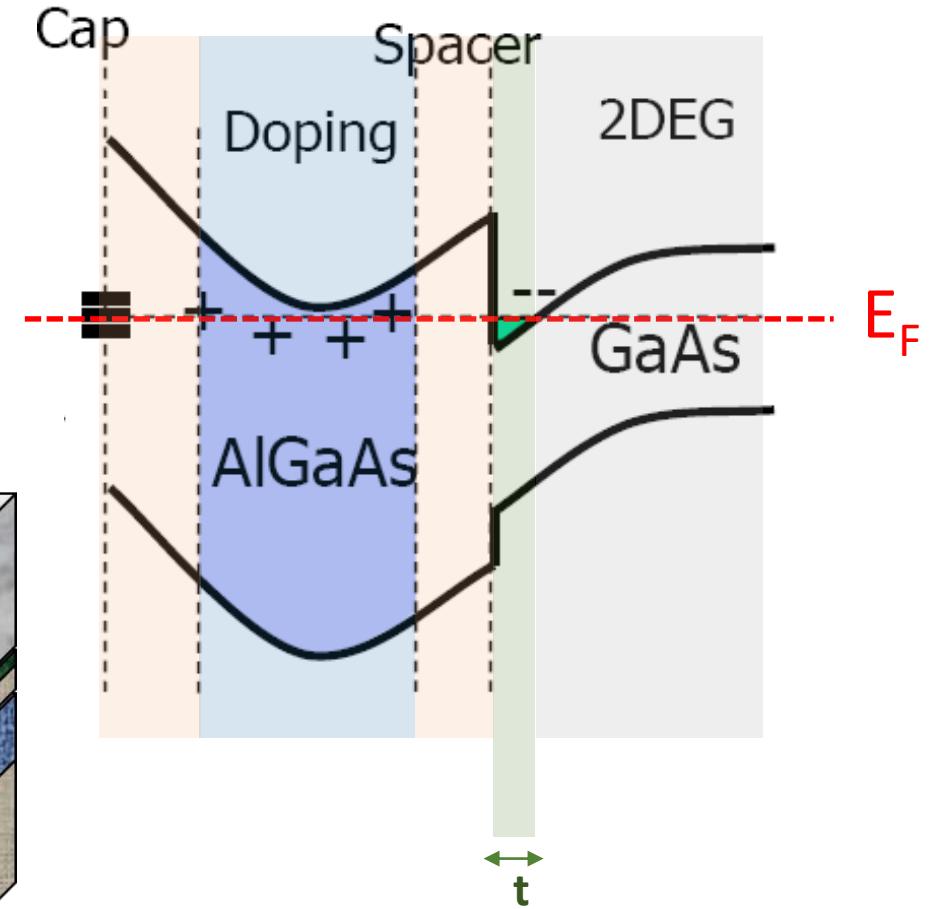


2D Electron Gas (2DEG)

Classical example:
AlGaAs/GaAs heterointerface



Electrons confined in 2D



Engineering a 1D channel in a 2DEG

VOLUME 60, NUMBER 9

PHYSICAL REVIEW LETTERS

29 FEBRUARY 1988

Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas

B. J. van Wees

Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands

H. van Houten, C. W. J. Beenakker, and J. G. Williamson,

Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

L. P. Kouwenhoven and D. van der Marel

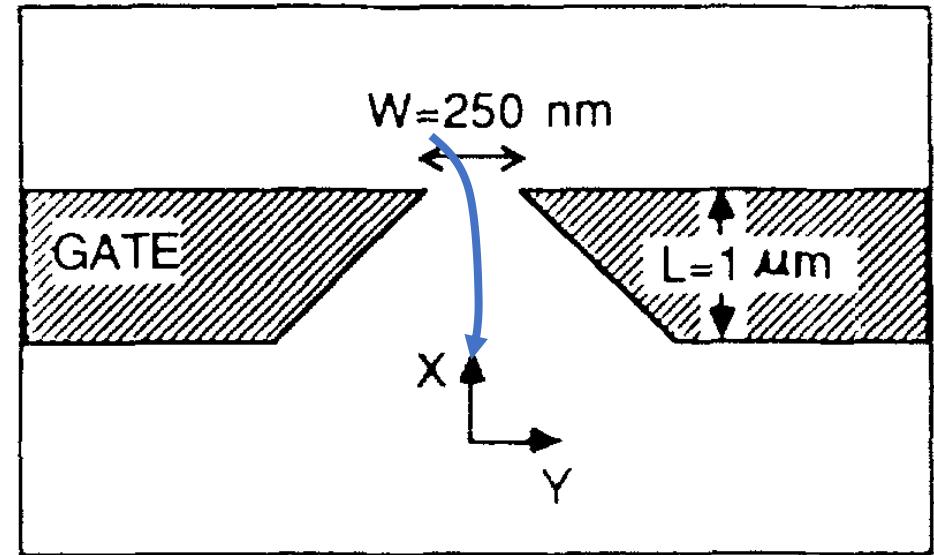
Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands

and

C. T. Foxon

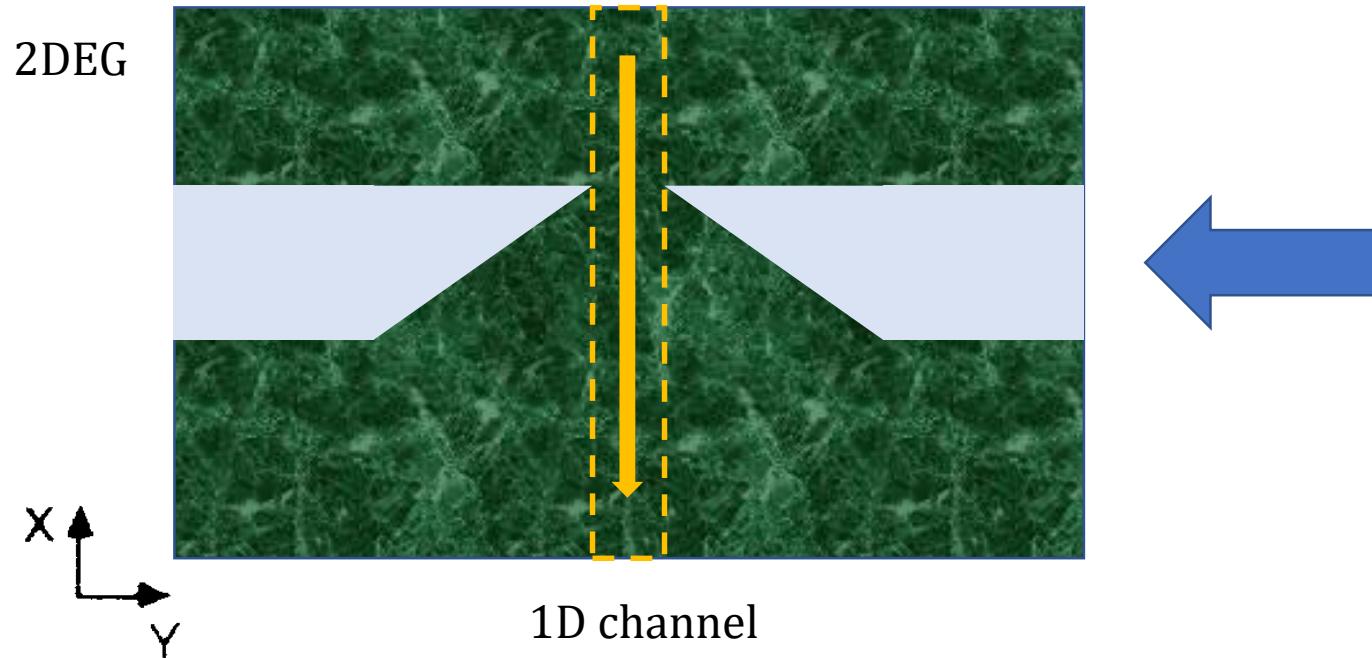
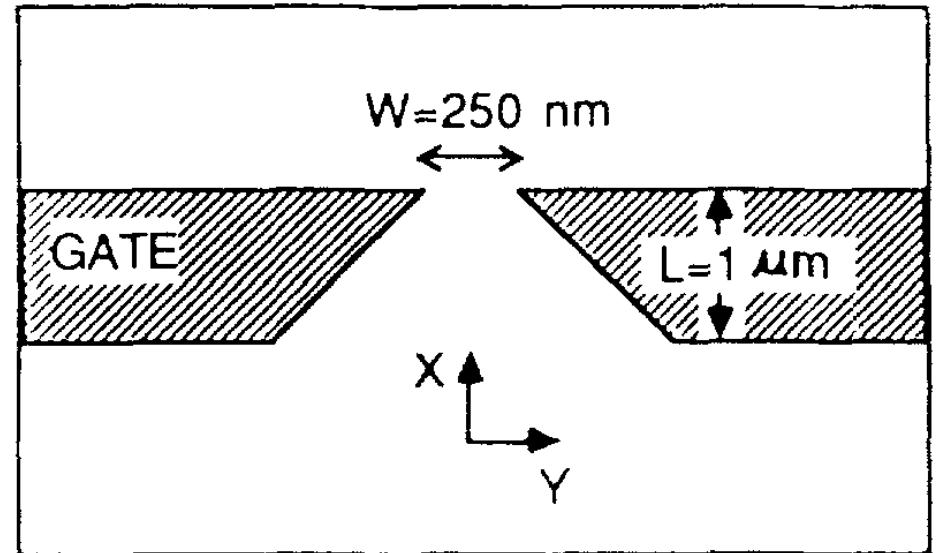
Philips Research Laboratories, Redhill, Surrey RH1 5HA, United Kingdom

(Received 31 December 1987)



Depletion of carriers beneath the gates
(point contacts)

Engineering a 1D channel in a 2DEG



The depletion of the carrier in the 2DEG induces the formation of a 1D channel.

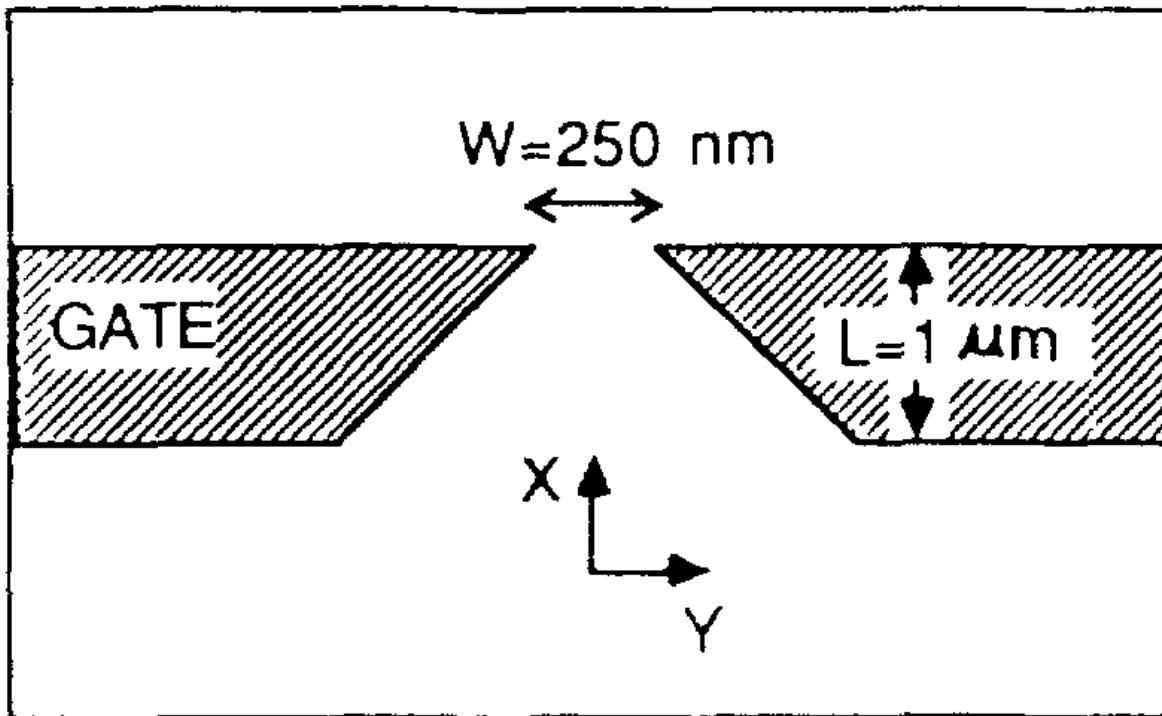
The states flowing in the channel are confined in the y direction with direct consequences on the dispersion relation.

How can we tune the position of the sub-bands?

Tuning the channel properties

Question:

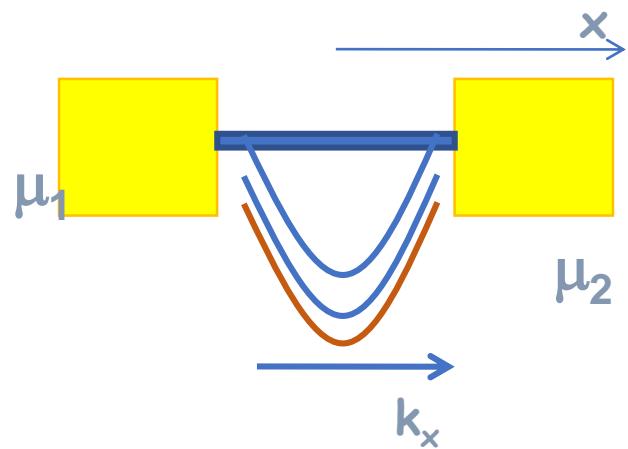
*What is the advantage of using a 2DEG to engineer a 1D channel?
How the geometrical parameters affect the physics of the system?*



Tuning the channel properties

To be discussed in class

Quantum conductance



Consider a wire with one sub-band occupied connecting two larger reservoirs with a voltage difference V between them.

$$J = I = \rho \cdot v_d = n \cdot e \cdot v_d$$

$$n = 2 \cdot D(E) \cdot (\mu_1 - \mu_2)$$

$$V_{bias} = \frac{(\mu_1 - \mu_2)}{e}$$

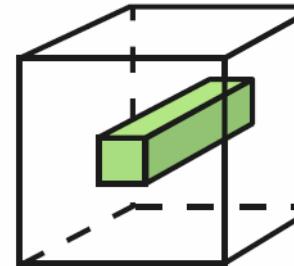
$$D(E) = \frac{dN}{dk} \cdot \frac{dk}{dE}$$

$$v_d = \frac{1}{\hbar} \cdot \frac{dE}{dk}$$

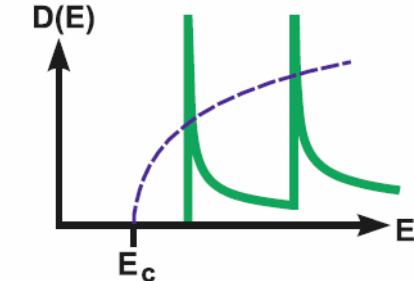
LANDAUER FORMULA

$$G_N = \frac{2e^2}{h} \sum_{i=1}^N T_i \quad T \text{ is the transmission of each mode}$$

quantum wire



$$D(E) \propto \frac{1}{\sqrt{E}} \quad v(E) \propto \sqrt{E}$$



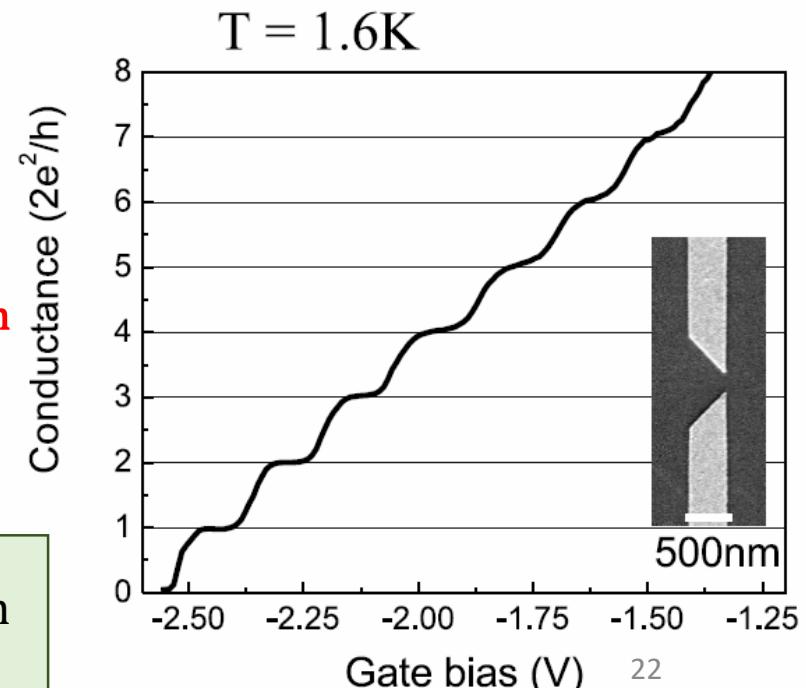
$$I = \Delta n \cdot q \cdot v \propto \frac{1}{\sqrt{E}} \sqrt{E} \rightarrow \text{constant per sub-band}$$

$$G = \frac{I}{V_{bias}} = \frac{2e^2}{h} \cdot D(E) \cdot v_d$$

$$G = \frac{I}{V_{bias}} = \frac{2e^2}{h} \cdot \frac{dN}{dk}$$

$$G_0 = \frac{2e^2}{h}$$

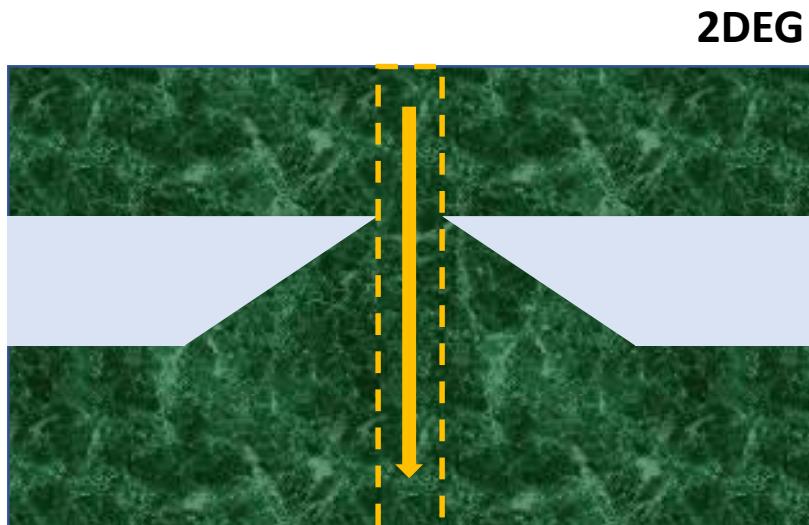
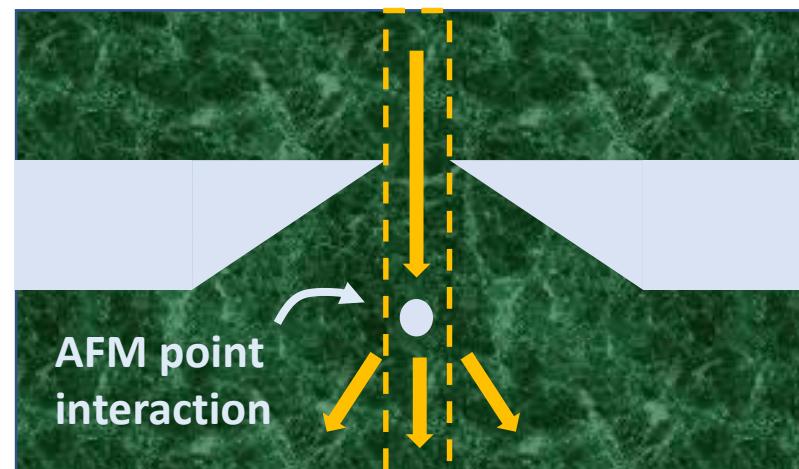
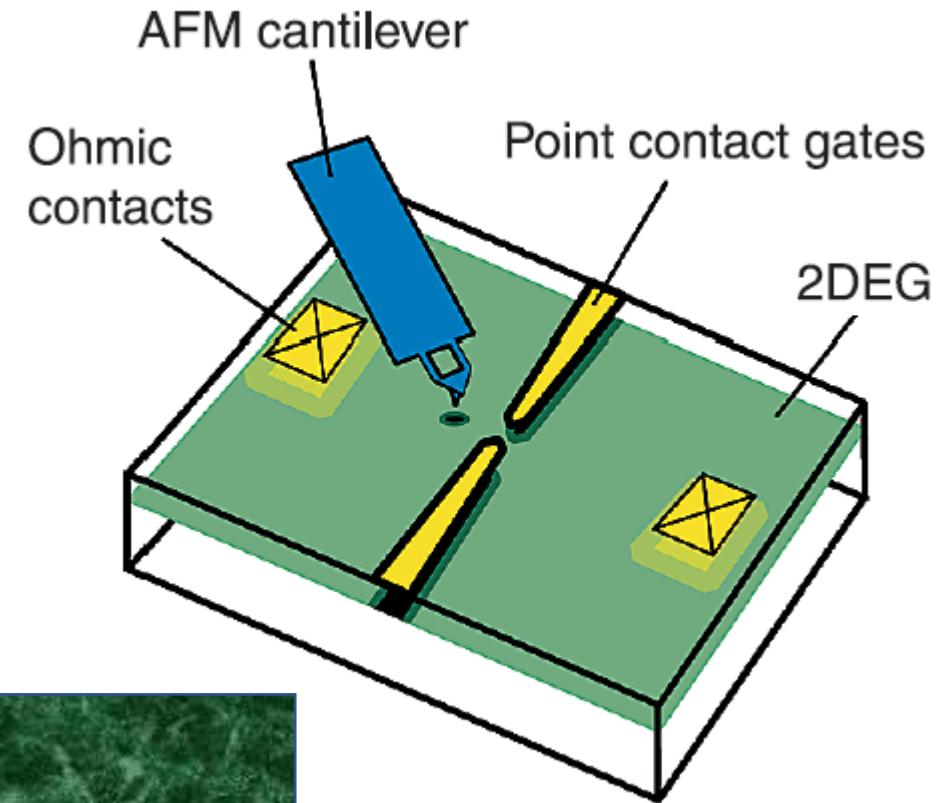
Number of sub-bands involved in the conduction (modes)



Imaging Coherent Electron Flow from a Quantum Point Contact

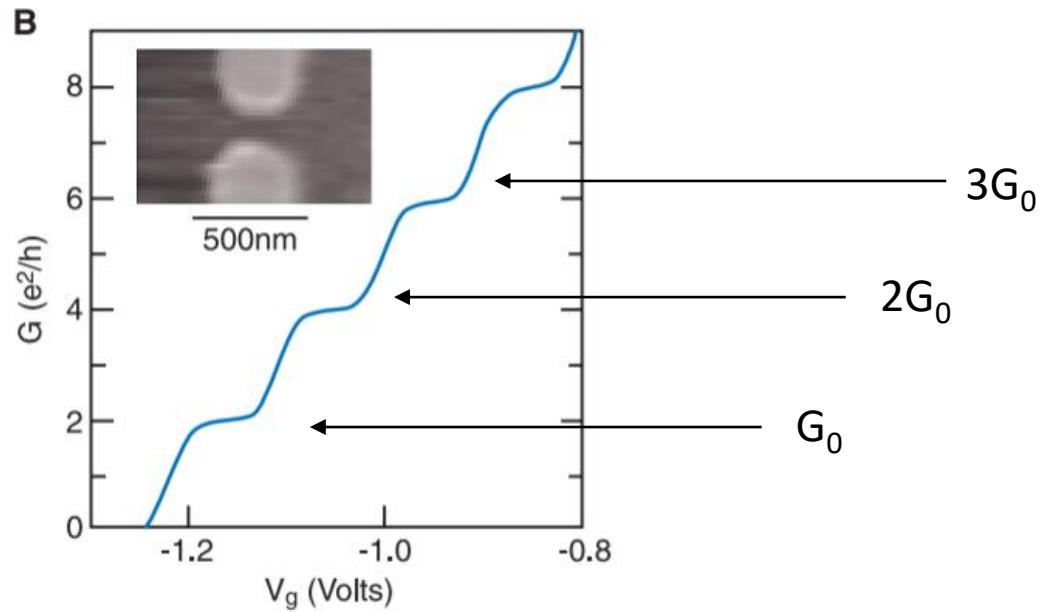
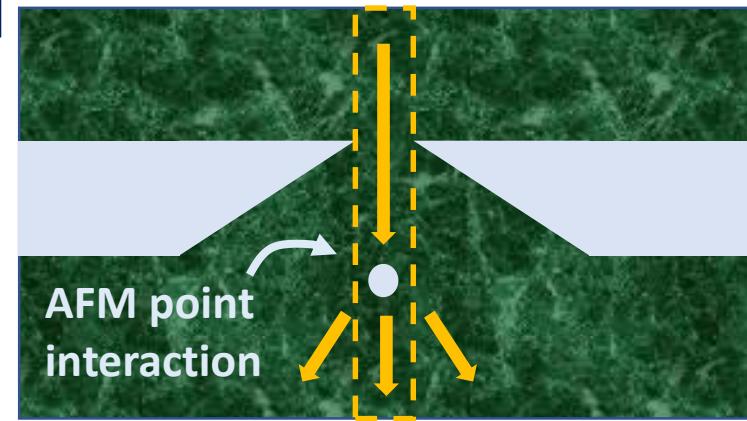
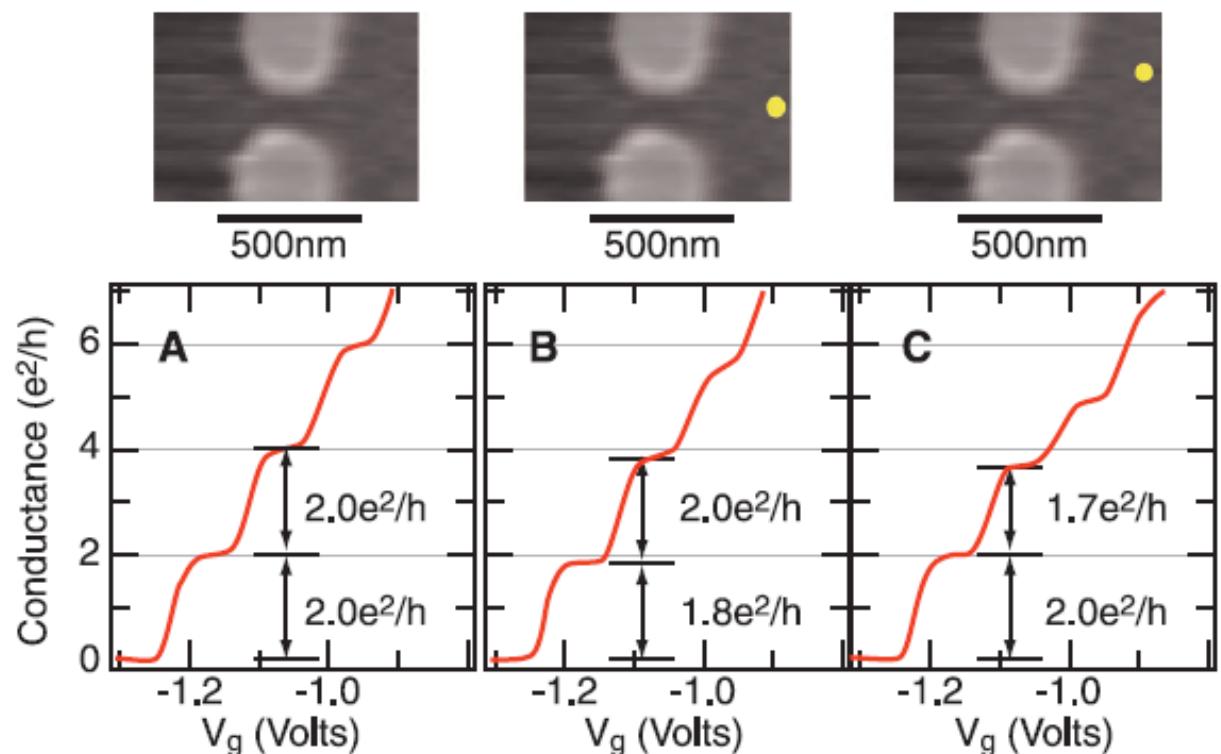
M. A. Topinka,¹ B. J. LeRoy,¹ S. E. J. Shaw,¹ E. J. Heller,¹
R. M. Westervelt,^{1*} K. D. Maranowski,² A. C. Gossard²

SCIENCE VOL 289 29 SEPTEMBER 2000

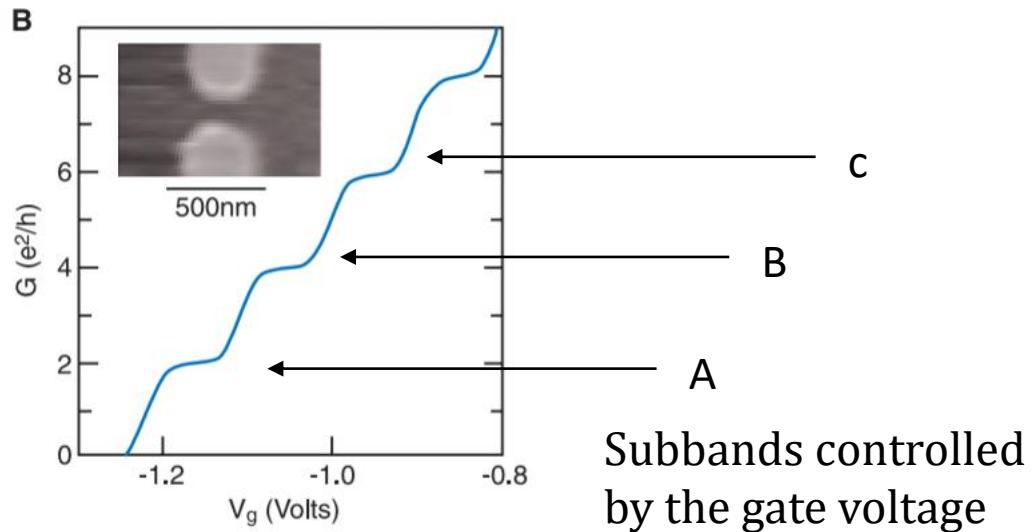


Imaging transmission modes

Subbands controlled by the gate voltage



Imaging transmission modes



With increasing channel width:

- The electron flow becomes wider in correspondance of the conductance increase
- Interference patterns are imaged due to constructive/destructive interference of coherent states.

