
Mid-term course evaluation

From today until Sunday March 23th at midnight:

Indicative Student Feedback on Teaching

More info: https://www.epfl.ch/education/teaching/fr/soutien-a-lenseignement/ressources-
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Class 07
Charge transport in semiconductors

17.03.2025

 Charge mobility
• Relaxation time approximation
• Scattering phenomena
• Matthiesen’s rule

 2DEG
• Engineering 1D channel
• Quantum conductanceGrundmann, Chapter 8



Electron transport in an electron gas
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Drude model for electron gas

Ԧ𝐹 = −𝑒𝐸 = ħ
𝑑𝑘

𝑑𝑡
= 𝑚𝑒

𝑑 Ԧ𝑣

𝑑𝑡

𝑣1

𝑣2 𝑣3

𝑣4

𝒗𝒅 = 𝒗𝒅
Average velocity

Ԧ𝐽𝑑𝑟𝑖𝑓𝑡 = −𝑒 ∗ 𝑛 ∗ Ԧ𝑣𝑑

Ԧ𝑣𝑑 = µ𝑒𝐸

Ԧ𝐽𝑑𝑟𝑖𝑓𝑡 = −𝑒 ∗ 𝑛 ∗ µ𝑒𝐸

Current density vs average velocity

Average velocity vs electric field

Current density vs electric field



Electron transport in a semiconductor
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Modified Drude model for semiconductors

Ԧ𝐹 = −𝑒𝐸 = ħ
𝑑𝑘

𝑑𝑡
= 𝒎∗

𝑑 Ԧ𝑣

𝑑𝑡

𝑣1

𝑣2 𝑣3

𝑣4

𝒗𝒅 = 𝒗𝒅
Average velocity

Ԧ𝐽𝑑𝑟𝑖𝑓𝑡 = −𝑒 ∗ 𝑛 ∗ Ԧ𝑣𝑑,𝑒 + 𝑒 ∗ 𝑝 ∗ Ԧ𝑣𝑑,ℎ

Ԧ𝑣𝑑,𝑒 = µ𝑒𝐸

Ԧ𝐽𝑑𝑟𝑖𝑓𝑡 = −𝑒 ∗ 𝑛 ∗ µ𝑒𝐸 +𝑒 ∗ 𝑝 ∗ µℎ𝐸

Current density vs average velocity

Average velocity vs electric field

Current density vs electric field

Ԧ𝑣𝑑,ℎ = µℎ𝐸

𝑬
Ԧ𝐽𝑒
Ԧ𝐽ℎ

𝒗𝒅,𝒆
𝒗𝒅,𝒉

𝐽𝑑𝑟𝑖𝑓𝑡 = 𝑒 ∗ (𝑛 ∗ µ𝑒 + 𝑝 ∗ µℎ) ∗ 𝐸

σ: conductivity

Ambipolar conduction
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Relaxation time approximation

Ԧ𝐹 = −𝑒𝐸 = ħ
𝑑𝑘

𝑑𝑡
= 𝒎∗

𝑑 Ԧ𝑣

𝑑𝑡

𝑣1

𝑣2 𝑣3

𝑣4

𝒗𝒅 = 𝒗𝒅
Average velocity

Question:
Which law of classical physics would not be valid without 
collisions? Is it physically possible to achieve it?

Δt1 Δt2 Δt3

Δt𝑎𝑣 = 𝜏
Average time between collision events 

(scattering)
𝟏

𝜏
→ scattering frequency 

(proportional to the scattering probability)

RELAXATION TIME APPROXIMATION

𝒅𝒗

𝒅𝒕
=

𝒗𝒅

𝝉

−𝑒𝐸 = 𝑚∗
𝑣𝑑
𝜏

𝑣𝑑 = −
𝑒𝜏

𝑚∗ 𝐸

µ = −
𝒆𝝉

𝒎∗ 𝝈 = −
𝒆𝟐𝒏𝝉

𝒎∗
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(1.12 eV)

(0.67 eV)

(1.42 eV)

(3.40 eV)

(0.17 eV)

(0.36 eV)

(1.34 eV)

(3.37 eV)

Low m* = higher µ

Under the relaxation time approximation:

Electron effective mass vs band gap

Is the band gap affecting the mobility?  
If so, can you explain why?

How would you engineer the charge transport in a semiconductor?

Mobility of real materials
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Scattering source

How many scattering phenomena in a crystal can you think of?
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µ α 𝑻−
𝟑

𝟐

Lattice phonons (non-polar)
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µ α
𝑻
𝟑
𝟐

𝑵𝒅

How would you explain the mobility
drop at dopant concentration 

higher than 1020cm-3 ?

Ionized impurities
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Mobility vs T in an ideal doped semiconductor

Can you explain
the evolution of 

mobility as a 
function of T 
and dopant 

concentration?
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Hole trapping
Barrier compensated

Crystal defects 
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Matthiesen’s rule

𝟏

𝜏
→ scattering probability

𝟏

τ∗
=

𝟏

τ𝟏
+

𝟏

τ𝟐
+

𝟏

τ𝟑
+⋯

𝟏

τ∗
=෍

𝒊

𝟏

τ𝒊

𝟏

µ∗
=෍

𝒊

𝟏

µ𝒊
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No  (low)
doping

Very high
doping

Small region (10 nm) [confinement]
High charge density
High mobility

Remote doping

µ = −
𝒆𝝉

𝒎∗ 𝝈 = −
𝒆𝟐𝒏𝝉

𝒎∗

2D electon gas – 2DEG

Principle of 
High Mobility Transistor



Classical example: 

AlGaAs/GaAs heterointerface
Electrons confined in 2D

16

EF

t

2D Electron Gas (2DEG)



Depletion of carriers beneath the gates 
(point contacts)
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Engineering a 1D channel in a 2DEG



2DEG

1D channel

The depletion of the carrier in the 2DEG induces the formation 
of a 1D channel.

The states flowing in the channel are confined in the y direction
with direct consequences on the dispersion relation.

How can we tune the 
position of the sub-

bands?
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Engineering a 1D channel in a 2DEG
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Tuning the channel properties

Question:
What is the advantage of using a 2DEG to engineer a 1D channel? 
How the geometrical parameters affect the physics of the system?



Direction of the channel 2DEG 
thickness

Gate spacing

𝐸 𝑘𝑥 =
ħ2𝑘𝑥

2

2𝑚∗ +
π2ħ2

2𝑚∗

𝑎2

𝑡2
+
𝑏2

𝑤2

W W

EF

E

kx

E

kx

By changing the spacing between the gates (i.e. the width of the channel) it is
possible to tune the energy difference between subbands
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Tuning the channel properties

To be discussed in class



𝑉𝑏𝑖𝑎𝑠 =
(μ1 − μ2)

𝑒

𝐽 = 𝐼 = ρ ∗ 𝑣𝑑 = 𝑛 ∗ 𝑒 ∗ 𝑣𝑑

𝑛 = 2 ∗ D E ∗ (μ1 − μ2)

kx

x

m1

m2

𝐺 =
𝐼

𝑉𝑏𝑖𝑎𝑠
=
2𝑒2

ℎ
∗ 𝐷 𝐸 ∗ 𝑣𝑑

𝐺𝑁 =
2𝑒2

ℎ
෍

𝑖=1

𝑁

𝑇𝑖
T is the transmission 
of each mode

LANDAUER FORMULA
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Consider a wire with one sub-band 
occupied connecting two larger 
reservoirs with a voltage 
difference V between then.

D(E)∝ ൗ1 𝐸 𝑣(𝐸) ∝ √𝐸

 E
E

vqnI
1

constant per 

sub-band

𝐺0 =
2𝑒2

ℎ
𝐷 𝐸 =

𝑑𝑁

𝑑𝑘
∗
𝑑𝑘

𝑑𝐸

𝑣𝑑 =
1

ħ
∗
𝑑𝐸

𝑑𝑘

𝐺 =
𝐼

𝑉𝑏𝑖𝑎𝑠
=
2𝑒2

ℎ
∗
𝑑𝑁

𝑑𝑘
Number of sub-
bands involved in 
the conduction 
(modes)

Quantum condactance



SCIENCE VOL 289 29 SEPTEMBER 2000

2DEG

AFM point 
interaction
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Studying quantum condactance



AFM point 
interaction

3G0

Subbands controlled by the gate voltage

G0

2G0

24

Imaging transmission modes



Subbands controlled
by the gate voltage

With increasing channel width:

- The electron flow becomes wider in 
correspondance of the conductance increase

- Interference patterns are imaged due to 
constructive/destructive interference of 
coherent states.

A

B

c
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Imaging transmission modes


